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Algorithmic foundations of learning 
for modern AI

Figure 1: My research is on al-
gorithmic foundations of learning
for modern AI systems.

Machine learning has achieved remarkable breakthroughs across various
application domains of Artificial Intelligence (AI), including games, protein
folding, natural language processing, drug synthesis, recommender systems,
self-driving cars, and materials discovery. Despite the remarkable empirical
success, we still lack a solid understanding of the capabilities and limitations
of such AI systems. Critical foundational gaps, if left unaddressed, will
ultimately impede progress in AI and undermine its potential to meet the
future needs of our society.

An overarching goal of my research is to establish algorithmic founda-
tions of learning for modern AI systems, with the vision of enabling
next-generation AI with better scalability, explainability, and transferabil-
ity. For this vision and goal, I have tackled among the most challenging
AI systems: data-driven decision-making, in which learners are tasked with
learning an optimal decision-making model using data from interactions with an unknown environment. My
work has so far focused on three key challenges of learning (Figure 1), emerged from practical data-driven
decision-making, (1) offline learning: learning from pre-collected offline data to mitigate expensive online
interaction, (2) multi-agent learning: learning in the presence of multiple strategic agents, and (3) trust-
worthy learning: learning safe and robust models for adversarial environments. My approach emphasizes
understanding learning through the lens of critical resources (e.g., data and computation) and designing opti-
mal algorithms that use these resources efficiently.

1. Offline learning

The growth in scale of pre-collected data suggests that data-driven decision-making should take advantage of
such offline data for learning. In many cases, such offline learning is not even a choice but mandatory, due to
the prohibitive costs, safety concerns, and ethical issues of online data collection. However, a key challenge is
that the offline data distribution differs from the distribution that is induced by the target policy to be learned.
Additionally, offline data often lives in high dimensions, leading to an exponentially large state space. I have
established fundamental limits and capabilities of offline learning for data-driven decision-making in large state
spaces, using bounded-complexity function approximation (e.g., neural networks) and novel algorithmic design.

Bellman policy transfer coefficient 
[Nguyen-Tang and Arora, 2024] 

Data diversity 
[Nguyen-Tang and Arora, 2023] 

Bellman error transfer coefficient 
[Song et al., 2022] 

Bellman squared ratio 
[Xie et al., 2021] 

Single-policy concentrability 
[Liu et al., 2019, Rashidinejad et al., 2021] 

All-policy concentrability 
[Munos and Szepesvári, 2008]

Figure 2: Nesting of problem
classes that are offline learnable
under different notions of data
coverage.

Neural networks for offline learning of large-scale problems Neural
networks are often used to approximate state value functions and general-
ize across large state spaces of large-scale problems. However, it remains
elusive which natural problems benefit from offline data when using neural
networks and to what extent. Many large-scale problems permit a natural
inductive bias wherein transition dynamics exhibit similarity between sim-
ilar states, allowing for a smoothness assumption to relate these dynamics.
In [1], I model this similarity using Besov smoothness – a general smooth-
ness condition that generalizes both Lipschitz and Sobolev smoothness, and
show that deep neural networks can exploit this property to learn provably
near-optimal policies from uniformly covered offline data, with accuracy in-
dependent of the number of states and actions. My research got the attention
from other machine learning experts who built on my work and studied other
dynamic structures to improve sample complexity of offline learning using
neural networks [2].

Driven by real-world needs and advances in deep learning theory, I have developed provably optimal and
efficient learning algorithms for offline learning using neural networks and gradient-based optimization. These
algorithms handle offline data with partial coverage and apply to both contextual bandits [3] and Markov
decision processes (MDPs) [4], achieving competitive performance on a large-scale benchmark.

A general theory and algorithmic framework for large-scale offline decision-making Despite its
significance, understanding offline decision-making in large state spaces with general function approximation
remains limited. In [5, 6], I show that offline decision-making is possible for a wide and novel range of distribution
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shift regimes under function approximation with bounded ℓ1-covering numbers, the most general complexity
condition thus far in the offline decision-making literature. The new regimes are captured by new notions of
data coverage, including data diversity [5] and Bellman policy transfer coefficient [6], which strictly subsume
previous notions (Figure 2). I also show a generic algorithmic framework that offers state-of-the-art error bounds
for general bounded-complexity function approximation and, in particular, nearly minimax-optimal bounds for
finite pseudo-dimension function classes. This framework unifies existing algorithms and facilitates the design of
novel algorithms that use posterior sampling, providing practitioners with better insights, stronger guarantees,
and more practical algorithms.

2. Multi-agent learning

Most challenging AI problems can be systematically framed as multi-agent learning, wherein multiple agents
learn to act in a shared environment. Learning to make decisions in a static yet unknown environment is
already hard, and harder still when multiple agents influence each other’s learning outcomes and actions. A
key challenge for multi-agent learning is non-stationarity, which is faced from the learning agent’s perspective
when the other agents react strategically. I have established fundamental limits and algorithmic principles of
multi-agent learning in both cooperative and competitive settings, using novel analysis and algorithms built
upon advances in reinforcement learning and game theory.

Learning against adaptive opponents While most of the literature focuses on learning equilibria, equilibria
are not all we need [7]. In strongly reactive systems (e.g., stock markets) where the opponent is adaptive to
the learner’s past strategies, the learner needs to exploit the opponent to maximize their return. For adaptive
opponents, perhaps the only performance measure that makes sense is policy regret [8], a counterfactual notion
that evaluates a competing strategy on the sequence of events that would have been generated if the competing
strategy were followed. In [9], I initialize the first study on learning against adaptive opponents in Markov
games using policy regret. I establish statistical limits for exploiting an adaptive opponent in games by showing
the necessity of imposing constraints on memory, stationarity, or regularity in the opponent’s responses. I
showcase an algorithmic principle to exploit the weakness of an opponent who adapts more structurally. My
work will benefit various learning-based systems with hierarchy information, such as human-robot collaboration,
autonomous systems, and mechanism design for learning agents.

Learning to collaborate to solve similar tasks faster One of the main advantages of multi-agent learning
emerges in collaborative settings, where agents can share their experiences to learn their similar tasks faster
and better. Despite the ubiquity of collaborative settings, a formal understanding of how and when learners
of similar tasks benefit from sharing their respective experiences is still in its infancy. In [10], I formulate
this question in the context of contextual linear bandits. I design a novel, computationally efficient, and nearly
minimax-optimal distributed learning algorithm based on upper confidence bounds, that adaptively coordinates
a set of agents to share their respective experiences while the agents are solving their own tasks. This paper
will benefit federated learning and distributed collaborative systems.

3. Trustworthy learning

A key challenge in modern AI systems is ensuring generalization across diverse environments. Existing methods
often lack robustness to variations in the test environments. To address this challenge, several recent works
leverage adversarial training to optimize for worst-case scenarios, which often exhibit poor average-case per-
formance, limiting their practical utility. I have developed scalable algorithms that better balance robust and
average performance for data-driven decision-making, using distributionally robust optimization and distribu-
tional reinforcement learning (RL).

Robust decision-making under uncertainty Decision-making problems often assume that the training
environment matches the deployment environment, which is unrealistic in many practical settings. In [11], I
address this issue by introducing a robust regret objective, aimed at maximizing expected return against the most
adversarial distributions over environments. Given the continuous action space, I model reward similarity using
Gaussian processes, solve a tractable distributionally robust optimization problem with Thompson sampling
on the surrogate reward, and show that this approach converges to an ϵ-suboptimal robust policy in a finite
number of steps, despite the continuous action space. This work establishes the first framework for computing
distributionally robust policies under uncertainty in continuous action spaces.
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Scalable methods for distributional RL Distributional RL learns the full return distribution for each
policy, enabling the use of risk-sensitive measures (e.g., CVaR, CPT) for robust generalization. Existing methods
represent the return distribution via order statistics but fail to account for their properties during learning. In
[12], I introduce a novel method using free particles to simulate return distribution samples based on statistical
hypothesis testing. My algorithm sets a new record in the Atari game benchmark, is widely adopted by RL
practitioners, and is featured as an exercise in the distributional RL textbook [13].

4. Future directions

I have made significant contributions to the foundations of previous learning settings; however, we have only
begun to explore the full potential of these areas and there is much more to be done. Beyond these ongoing topics,
I will describe my research agenda, which fits well within my expertise and interest, inspires multi-disciplinary
collaborations (including fellow faculties, postdocs, graduate and Ph.D. students, and undergraduate students),
and expands over 2-year, 5-year, and 10-year research plans.

Transfer learning The techniques I have developed in offline learning apply to harness pre-collected data
to improve the decision-making performance for the same task. While this fundamental setting is already
challenging and serves as a foundational building block of a transferable AI system, moving forward, I will
focus on the fundamental question of using data from multiple heterogeneous source tasks to improve the
decision-making performance w.r.t. a target task for which (active) data collection is limited or unavailable.
Answering this question will benefit application domains where it is costly to acquire new data (e.g., AI in
medicine, genomics, insurance industry, smart cities), and offer opportunities to re-think many fundamental
aspects of machine learning from modern challenges. Building on my previous work, I aim to tackle this research
question by exploring the fundamental interplay between task similarity and function approximation for transfer
learnability. The emphasis will be on adaptivity, i.e., how to design a learning algorithm that automatically
adapts to all task similarity scenarios, instead of specifically designing for different scenarios. Algorithmic
approaches to transfer learning, such as representation learning [14, 15, 16] that I have co-developed, will also
will be instrumental in developing foundations of transfer learning.

Learning meets games The world is moving toward the coexistence of multiple agents that learn from their
interactions. Data input to machine learning algorithms can be generated by self-interested agents, and machine
learning is employed to address complex data-driven decision-making problems in economics. The theoretical
foundations of these problems lie at the intersection of learning and game theory. With my future lab, I will
continue to contribute to bridging the gap between machine learning and game theory. Five research agendas
aimed at addressing this gap were proposed by other experts in the field almost two decades ago [7]. Despite
numerous developments ever since, the field is still in its infancy. For example, we lack a solid understanding
of how to act optimally in the presence of other agents who can adapt and learn. This question underlies much
of the applications in collaborative settings, where multiple agents are centralized and coordinated to achieve a
team goal, or in strategic settings, where agents have their own interests and behaviors. My work [9] has provided
an initial yet important step toward addressing this question by studying algorithmic performance through a
counterfactual notion of regret, providing statistical limits and algorithmic design insights. A critical next step
is to explore which properties of the opponent’s learning algorithm (e.g., algorithmic stability) are sufficiently
general yet exploitable by a learner, and how to address large-scale problems using function approximation.

Capabilities and limitations of foundation models My previous research has taught me the crucial
role of function approximation (e.g., deep networks and complexity-bounded function classes) in dealing with
generalization for large-scale learning problems. Recently, a class of special neural networks known as foundation
models, such as transformers, have shown remarkable performance in large-scale domains of language, image,
and video. It is therefore crucial and timely to unveil the mechanisms by which foundation models facilitate
learning for modern AI systems. I will focus on understanding the inductive bias induced by the special
connectivity in foundation model (e.g., self-attention layers in transformers). I will investigate this problem
through the lens of functional analysis and communication complexity theory to understand which functions
that transformers, are (in)capable of computing, as well as from an optimization perspective to examine how
training methods contribute to models that generalize well.
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