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Motivation

Problem context: Offline policy learning (OPL) where a learner infers an optimal
policy given only access to a fixed dataset collected a priori by unknown behaviour
policies, without any active exploration
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Key challenges

Despite the importance of OPL, theoretical and algorithmic progress on this prob-
lem has been rather limited:

= Distributional shift: The prior analyses require the offline policy to be already
sufficiently explorative over the entire state space and action space, and to be

stationary

= Optimization: The prior analyses rely on simple function approximations such
as tabular representation or linear models with closed-form solutions. Using
neural network function approximation increases the expressiveness but
poses an additional challenge in optimization.

= Generalization: As we learn from the fixed offline data, the learned policy has
highly correlated structures where we cannot directly use the standard
concentration inequalities to derive a generalization bound
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Background

Question: Can we design practical OPL algorithms with neural network function
approximation with stronger theoretical guarantees and milder conditions?

Contributions

In this paper, we consider the problem of OPL with neural network function
approximation on the axes of distributional shift, optimization and generaliza-
tion via studying the setting of stochastic contextual bandits with overparam-
eterized neural networks. Specifically, we make three contributions toward
enabling OPL in more practical settings:

= Algorithmically, we proposed an algorithm that uses a neural network to
model any bounded reward function without assuming any functional form
(e.g., linear models) and uses a pessimistic formulation to deal with

distributional shifts.
= Theoretically, we proved that our algorithm learns the optimal policy with

an expected error of O(rkdY/?n=1/2), where n is the number of sample,  is

a measure of distributional shift, and d is the “effective dimension” of the

neural network.

= Notably, this result was established under milder data coverage condition than the prior
OPL works, with a reduction in computational complexity from O(n?) to O(n), and an
improved the dependency on d, as compared to an online counterpart.

= Empirically, we evaluated our algorithm in a number of synthetic and
real-world OPL benchmark problems, verifying its empirical effectiveness
against the representative methods of OPL.

https.//offline-rl-neurips.github.io/2021/index.html

Stochastic Contextual Bandits: \We consider a stochastic K-armed contextual
bandit where at each round ¢, an online learner observes a full context x; =
{214 € RY : o € [K]} sampled from a context distribution p, takes an action
at € K], and receives a reward ry ~ P(+|z¢q,).

A policy m maps a full context (and possibly other past information) to a distribu-
tion over the action space [K]. For each full context z := {z, € R% : a € [K]},
we define UW(SIZ) = ECLNW('|$),TNP<“$CL)[T] and U*<ZE> = MmaXq UW<ZIZ>

Offline Contextual Bandit Setting: The goal in this setting is to learn an optimal
policy only from an offline data D,, = {(x¢, at, 1¢) 3¢ collected a priori by a be-
haviour policy u. The goodness of alearned policy @ is measured by the (expected)
sub-optimality the policy achieves in the entire (unknown) context distribution p:

subopt() := Ez~p[subopt(@; x)], where subopt(7; z) :== v*(z) — v ().

Neural networks: We consider fully connected neural networks with depth L > 2
defined on R? as
Fi(w) = VmWio (Wy_qo(...c(Wiu)...)),Yu € RY, (1)

where o(-) = max{-, 0} is the rectified linear unit (ReLLU) activation function, Wy €
R™¥A VW, € R Vi e 2. L — 1], W; € R™ and W = (W, ..., W) with
(W) € RP where p = md 4+ m + m?(L — 2).

Algorithm

Key highlights

= We used a neural network fy(xq) to learn the reward function h(z)

= \We constructed a lower confidence bound (LCB) of the reward function
based on which decision-making is guided

= The offline data is processed sequentially in an online-like manner

Algorithm 1 NeuraLCB

Input: Offline data D,, = {(x, as,7¢)}7—1, step sizes {n; }}_, , regularization parameter A > 0,
confidence parameters {5; }7 ;.

1: Initialize W () as follows: set M(O) = [W}, 0;0, W;],VI € [L — 1] where each entry of W,

is generated independently from N (0,4/m), and set WI(JO) = [w?, —w?!] where each entry of
w is generated independently from N (0, 2/m).
Ao < M.
fort=1,...,ndo
Retrieve (x¢, as, r¢) from D,,.
Te(x) < argmax,c(g) Li(Tq), for all x = {z, € R? : a

fW(t—l)(u) — 5t_1||VfW(t—1)(u) . m_1/2||A;_11,Vu € Rd
6: Ay A1 +vee(Viwa—(@ra,)) - vee(V fiyi-n (@4,q,)) T /m.
7. WO « WD — VL, (WED) where L,(W) = L(fw (@tq,) — 10)2 + Z2||W —
WO 2.
8: end for
Output: Randomly sample 7 uniformly from {71, ..., 7, }.

€ (K]} where Li(u) =

Theoretical Analysis

Assumption 1: 3\g > 0, H = Mgl where H is the neural tangent kernel (NTK)
matrix of the neural network in Algorithm 1.

T (- |ze)
P Di—1,71) || oo

<

Assumption 2: Vt, x4 is independent of Dy_1, and 3k € (0, 00),
Kk, Vt € [n].
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Theoretical Analysis (con't)

Table 1: The SOTA generalization theory of OPL with function approximation. Here the distribu-
tional shift measure x can be defined differently in different works.

Work Function Type Optimization Sub-optimality Data Coverage | Data Gen.
Yin & Wang (2020)® Tabular Greedy Analytical O(Ix]-K ( X | n—1/ 2) Uniform I
Rashidinejad et al. (2021) Tabular Pessimism Analytical (5 ( n~1/ 2) SPC I
Duan & Wang (2020)° Linear Greedy Analytical O (k 1/ 2+d-n 1 Uniform I
Jin et al. (2020) Linear Pessimism | Analytical O (d n~Y/ 2) Uniform I
Nguyen-Tang et al. (2021) | Narrow ReLU Greedy Oracle O (\/E n~2@rd ) Uniform I
This work Wide ReLU | Pessimism SGD O(k - Vd-n-Y 2) eSPC I/D

%% The bounds of these works are for off-policy evaluation which is generally easier than OPL problem.

Key highlights

= Our bound does not scale with p, but linearly with v'd, where d = k{f&ﬁ;}}%\;)

= Our bound does not require the offline policy to be uniformly explorative or
stationary

= We reduced computational complexity from O(n?) to O(n), and our bound
improves by a factor of Vd, as compared to its online counterpart.

Experiments

We evaluated NeuralLCB and representative baseline methods on both synthetic
and real-world datasets. (1) LinLCB uses LCB but relies on linear models, (2)
KernLCB uses RKHS as function approximation, (3) NeuralLinLCB is the same
as LinLCB except that it uses ¢(zq) = (V fiy0)(za)) as the feature extractor for
the linear model, (4) NeuralLinGreedy is the same as NeuralLinLCB except that it
relies on the empirical estimate of the reward function for decision-making, and
(5) NeuralGreedy is the same as NeuralLCB except it makes decision based on the
empirical estimate of the reward.
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(a) h(u) = 10(a”u)? ®) h(u) = uT AT Au (©) h(u) = cos(3a™ w)

Figure 1: The sub-optimality of NeuralLCB versus the baseline algorithms on synthetic datasets.
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Figure 2: The sub-optimality of NeuralLCB versus the baseline algorithms on real-world datasets.

Observation: NeuralLCB outperforms the representative baselines in both syn-
thetic and real-world experiments.

For more details, visit https:/arxiv.org/abs/2111.13807/
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