
Offline Neural Contextual Bandits:
Pessimism, Optimization and Generalization
Thanh Nguyen-Tang 1 Sunil Gupta 1 A.Tuan Nguyen 2 Svetha Venkatesh 1

1Applied AI Institute, Deakin University, Australia 2Department of Engineering Science, University of Oxford, UK

Motivation

Problem context: Offline policy learning (OPL) where a learner infers an optimal

policy given only access to a fixed dataset collected a priori by unknown behaviour

policies, without any active exploration

Behavioural Agent

Environment

offline data from
past interactions

(b) Off-policy learning (OPL)

optimal policy?

Target Agent

Environment

State,
Reward Action

(a) Online setting

Key challenges

Despite the importance ofOPL, theoretical and algorithmic progress on this prob-

lem has been rather limited:

Distributional shift: The prior analyses require the offline policy to be already

sufficiently explorative over the entire state space and action space, and to be

stationary

Optimization: The prior analyses rely on simple function approximations such

as tabular representation or linear models with closed-form solutions. Using

neural network function approximation increases the expressiveness but

poses an additional challenge in optimization.

Generalization: As we learn from the fixed offline data, the learned policy has

highly correlated structures where we cannot directly use the standard

concentration inequalities to derive a generalization bound

Question: Can we design practical OPL algorithms with neural network function

approximation with stronger theoretical guarantees and milder conditions?

Contributions

In this paper, we consider the problem of OPL with neural network function

approximation on the axes of distributional shift, optimization and generaliza-

tion via studying the setting of stochastic contextual bandits with overparam-

eterized neural networks. Specifically, we make three contributions toward

enabling OPL in more practical settings:

Algorithmically, we proposed an algorithm that uses a neural network to

model any bounded reward function without assuming any functional form

(e.g., linear models) and uses a pessimistic formulation to deal with

distributional shifts.
Theoretically, we proved that our algorithm learns the optimal policy with

an expected error of Õ(κd̃1/2n−1/2), where n is the number of sample, κ is

a measure of distributional shift, and d̃ is the “effective dimension” of the
neural network.
Notably, this result was established under milder data coverage condition than the prior

OPL works, with a reduction in computational complexity from O(n2) to O(n), and an

improved the dependency on d̃, as compared to an online counterpart.

Empirically, we evaluated our algorithm in a number of synthetic and

real-world OPL benchmark problems, verifying its empirical effectiveness

against the representative methods of OPL.

Background

Stochastic Contextual Bandits: We consider a stochastic K-armed contextual

bandit where at each round t, an online learner observes a full context xt :=
{xt,a ∈ Rd : a ∈ [K]} sampled from a context distribution ρ, takes an action

at ∈ [K], and receives a reward rt ∼ P (·|xt,at).
A policy π maps a full context (and possibly other past information) to a distribu-

tion over the action space [K]. For each full context x := {xa ∈ Rd : a ∈ [K]},
we define vπ(x) = Ea∼π(·|x),r∼P (·|xa)[r] and v∗(x) = maxπ vπ(x)

Offline Contextual Bandit Setting: The goal in this setting is to learn an optimal

policy only from an offline data Dn = {(xt, at, rt)}n
t=1 collected a priori by a be-

haviour policyµ. The goodness of a learned policy π̂ is measured by the (expected)

sub-optimality the policy achieves in the entire (unknown) context distribution ρ:

subopt(π̂) := Ex∼ρ[subopt(π̂; x)], where subopt(π̂; x) := v∗(x) − vπ̂(x).

Neural networks: We consider fully connected neural networks with depth L ≥ 2
defined on Rd as

fW (u) =
√

mWLσ (WL−1σ (. . . σ(W1u) . . .)) , ∀u ∈ Rd, (1)

where σ(·) = max{·, 0} is the rectified linear unit (ReLU) activation function, W1 ∈
Rm×d, Wi ∈ Rm×m, ∀i ∈ [2, L − 1], WL ∈ Rm×1, and W := (W1, . . . , WL) with
(W) ∈ Rp where p = md + m + m2(L − 2).

Algorithm

Key highlights

We used a neural network fW (xa) to learn the reward function h(xa)
We constructed a lower confidence bound (LCB) of the reward function

based on which decision-making is guided

The offline data is processed sequentially in an online-like manner

Theoretical Analysis

Assumption 1: ∃λ0 > 0, H � λ0I where H is the neural tangent kernel (NTK)

matrix of the neural network in Algorithm 1.

Assumption 2: ∀t, xt is independent of Dt−1, and ∃κ ∈ (0, ∞),
∥∥∥ π∗(·|xt)

µ(·|Dt−1,xt)

∥∥∥
∞

≤
κ, ∀t ∈ [n].

Theoretical Analysis (con’t)

Key highlights

Our bound does not scale with p, but linearly with
√

d̃, where d̃ = log det(I+H/λ)
log(1+nK/λ)

Our bound does not require the offline policy to be uniformly explorative or

stationary

We reduced computational complexity from O(n2) to O(n), and our bound

improves by a factor of
√

d̃, as compared to its online counterpart.

Experiments

We evaluated NeuraLCB and representative baseline methods on both synthetic

and real-world datasets. (1) LinLCB uses LCB but relies on linear models, (2)

KernLCB uses RKHS as function approximation, (3) NeuralLinLCB is the same

as LinLCB except that it uses φ(xa) = (∇f
W (0)(xa)) as the feature extractor for

the linear model, (4) NeuralLinGreedy is the same as NeuralLinLCB except that it

relies on the empirical estimate of the reward function for decision-making, and

(5)NeuralGreedy is the same as NeuraLCB except it makes decision based on the

empirical estimate of the reward.

Observation: NeuraLCB outperforms the representative baselines in both syn-

thetic and real-world experiments.

For more details, visit https://arxiv.org/abs/2111.13807

https://offline-rl-neurips.github.io/2021/index.html 2nd Offline Reinforcement LearningWorkshop, NeurIPS 2021 https://thanhnguyentang.github.io/

https://arxiv.org/abs/2111.13807
https://offline-rl-neurips.github.io/2021/index.html
https://thanhnguyentang.github.io/

