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Outline

▶ Background
▶ Offline policy learning for contextual bandits
▶ Deep neural networks

▶ Algorithm – NeuraLCB
▶ Use a neural network to learn the reward
▶ Use neural network’s gradients for pessimistic exploitation
▶ Lower confidence bound strategy
▶ Stochastic gradient descent for optimization
▶ Stream offline data for generalization and adaptive offline data

▶ Main theory
▶ Neural tangent kernel matrix + effective dimension +

single-policy concentration
▶ Õ(κ

√
d̃n−1/2) regret, where κ is distributional shift measure,

d̃ is effective dimension, n is the number of offline samples
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Background – offline K -armed contextual bandits

▶ Online setting: At each round t,
▶ Agent observes K d-dimensional contextual vectors
{xt,a ∈ Rd : a ∈ [K ]}

▶ Agent takes an action at and observe reward rt ∼ P(·|xt,at )
▶ Value: vπ(x) = Ea∼π(·|x),r∼P(·|xa)[r ]
▶ Optimal value: v∗(x) = maxπ vπ(x)
▶ Optimal policy: π∗ = arg maxπ vπ

▶ Offline policy learning (OPL) setting
▶ Offline data Dn = {(xt , at , rt)}n

t=1: collected a priori by an
unknown and possibly adaptive behaviour policy µ

▶ Goal: Learn π̂ from Dn with small sub-optimality:

SubOpt( π̂︸︷︷︸
data-dependent

) := Ex∼ρ[SubOpt(π̂; x)]

= Ex∼ρ︸ ︷︷ ︸
generalize to all contexts

[v∗(x)− v π̂(x)].
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Background – General reward function

Reward generation

rt = h(xt,at ) + ξt , h(·) ∈ [0, 1],

ξt ∼ R-subgaussian|{(xτ , aτ , rτ )}1≤τ≤t−1, xt , at

Including many contextual bandit problems:
▶ Linear contextual bandit: h(x) = ⟨x, θ⟩, ∥x∥ ≤ 1, ∥θ∥ ≤ 1
▶ Generalized linear bandit:

h(x) = g(⟨x, θ⟩), ∥x∥ ≤ 1, ∥θ∥ ≤ 1, ∥∇g∥ ≤ 1
▶ Kernelized bandit: h(x) in a norm-bounded RKHS

h is unknown and can be non-linear

Use a universal function approximator, e.g. neural networks
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Background – Deep neural networks

fW (x) =
√

mWLσ (WL−1σ (. . . σ(W1x) . . .)) ,∀u ∈ Rd ,

W (0)
l ∼ N (0, Θ(1/m)I) (initialization)

▶ σ(·) = max{·, 0} is ReLU function
▶ W1 ∈ Rm×d , Wi ∈ Rm×m, ∀i ∈ [2, L− 1], WL ∈ Rm×1

▶ W := (W1, . . . , WL), vec(W ) ∈ Rp, p = md + m + m2(L− 2)
▶ Gradient: ∇fW ∈ Rp
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Question

▶ Neural network-based offline policy learning [Nguyen-Tang
et al., 2021, Uehara et al., 2021]

▶ But they require
▶ Strong uniform data coverage: π(a|x)

µ(a|x) ≤ C <∞,∀π,∀x, a
▶ Intractable optimization oracle: f̂ = arg minf ∈F L(f )
▶ i.i.d. data: Dn = {(xt , at , rt)}n

t=1 are independent
▶ functional assumption on the reward function

Can we design a computationally efficient neural network-
based OPL algorithm that can
▶ learn a general reward function,
▶ require a weaker data coverage assumption, and
▶ work on adaptive offline data?
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Question

Can we design a computationally efficient neural network-
based OPL algorithm that can
▶ learn a general reward function,
▶ require a weaker data coverage assumption, and
▶ work on adaptive offline data?

Yes! NeuraLCB
▶ neural network to model reward function, LCB strategy for

pessimistic exploitation
▶ Stochastic gradient descent for optimization
▶ Stream offline data to handle generalization and adaptive data

Provable learning: Õ(κ ·
√

d̃ · n−1/2) sub-optimality. Compared to
online counterpart [Zhou et al., 2020],
▶ bound improved by a factor of

√
d̃

▶ computation: from O(n2) to O(n)



7/19

Question

Can we design a computationally efficient neural network-
based OPL algorithm that can
▶ learn a general reward function,
▶ require a weaker data coverage assumption, and
▶ work on adaptive offline data?

Yes! NeuraLCB
▶ neural network to model reward function, LCB strategy for

pessimistic exploitation
▶ Stochastic gradient descent for optimization
▶ Stream offline data to handle generalization and adaptive data

Provable learning: Õ(κ ·
√

d̃ · n−1/2) sub-optimality. Compared to
online counterpart [Zhou et al., 2020],
▶ bound improved by a factor of

√
d̃

▶ computation: from O(n2) to O(n)



8/19

NeuraLCB – Lower confidence bounds

Stream the data Dn = {(xt , at , rt)}nt=1 sequentially one by one. At
each step t,
▶ Retrieve (xt , at , rt) from Dn
▶ Compute LCB

Lt(·) := fW (t−1)(·)︸ ︷︷ ︸
mean

−βt−1 ∥∇fW (t−1)(·) ·m−1/2∥Λ−1
t−1︸ ︷︷ ︸

variance

▶ Extract policy π̂t(x)← arg maxa∈[K ] Lt(xa), where
x = {xa ∈ Rd : a ∈ [K ]}

Output: Uniformly sample π̂ from {π̂1, . . . , π̂n}
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NeuraLCB – Update parameters
▶ Update the empirical covariance matrix Λt , where Λ0 = λI:

Λt ← Λt−1 + vec(∇fW (t−1)(xt,at )) · vec(∇fW (t−1)(xt,at ))T /m︸ ︷︷ ︸
dynamical as W (t−1) changes with t

▶ Update W (t) using stochastic gradient descent:

W (t) ←W (t−1) − ηt∇Lt(W (t−1))︸ ︷︷ ︸
SGD

where Lt(W ) = 1
2(fW (xt,at )− rt)2 + mλ

2 ∥W −W (0)∥2F︸ ︷︷ ︸
ridge regression

.

Compared to parameter update in NeuralUCB [Zhou et al., 2020],
▶ NeuralUCB: train a new net from scratch at each t, O(n2)

update steps
▶ NeuraLCB: re-uses the trained parameters from the prev.

iter., O(n) update steps
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NeuraLCB – Confidence radius
▶ Under overparameterized setting (m≫ 1):

∥W ∗ −W (t)∥Λt ≤ βt where

βt := (
√

2m−1/2S︸ ︷︷ ︸
∥W ∗−W (0)∥F

+ t1/2λ−1/2m−1/2︸ ︷︷ ︸
∥W (t)−W (0)∥F via SGD

)
√

λ + C2
3 tL︸ ︷︷ ︸√

∥Λt∥

W ∗: network params that interpolate h in the training contexts

Compared to NeuralUCB [Zhou et al., 2020],

βt = O(m−1/12t7/12L2λ−7/12(
√

λS + ν
√

d̃ log(1 + tK/λ)))
+O(m−1/6t19/6L9/2λ−13/6)

Our confidence radius does not depend on d̃
▶ much simpler and tighter
▶ Key: Don’t regress toward the minimizer of the least

squared problem in the linear case.
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Main theorem – Assumptions

Assumption
∃λ0 > 0 such that H ⪰ λ0I where H is the neural tangent kernel
matrix [Arora et al., 2019, Du et al., 2019b,a, Cao and Gu, 2019]
on training contexts {x(i)}i∈[nK ]

▶ Satisfied if no two contexts in {x(i)}i∈[nK ] are parallel.
▶ λ0 ≥ Ω(d) under mild input condition [Nguyen et al., 2021]
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Main theorem – Assumptions

Assumption
▶ xt is independent of Dt−1 = {(xτ , aτ , rτ )}τ∈[t−1],
▶ ∃κ ∈ (0,∞),

∥∥∥ π∗(·|xt)
µ(·|Dt−1,xt)

∥∥∥
∞
≤ κ,∀t ∈ [n].

▶ the first part is minimal,
▶ e.g. when {xt}n

t=1
i.i.d.∼ ρ.

▶ at can still depend on Dt−1 and xt

▶ the second part only requires that µ has sufficient coverage
over only π∗ only in the observed contexts
▶ weaker than any other existing data coverage assumptions for

OPL
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Main theorem – Definition

Definition
Effective dimension d̃ = log det(I + H/λ)/ log(1 + nK/λ) [Zhou
et al., 2020, Valko et al., 2013, Yang and Wang, 2020, Yang et al.,
2020]

▶ d̃ measures how quickly the eigenvalues of H decays
▶ d̃ = O(log n) in some typical cases
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Main theorem – sub-optimality bound

Theorem
Set learning rates ηt = ι√

t where

ι−1 = Ω(n2/3m5/6λ−1/6L17/6 log1/2 m) ∨ Ω(mλ1/2 log1/2(nKL2(10n)/δ)),

under overparameterization, w.p. at least 1− δ,

E[SubOpt(π̂)] = Õ(κ ·max{
√

d̃ , 1} · n−1/2)

▶ the bound does not depend on p
▶ Compared to NeuralUCB [Zhou et al., 2020]:

√
d̃-improved

▶ NeuralUCB: O(d̃n−1/2) regret
▶ Minimax lower bound regret [Chu et al., 2011]: Ω(

√
dn−1/2)
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Main theorem – Comparison
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Takehome messages
▶ NeuraLCB uses a neural net to learn the reward and LCB

strategy for pessimistic exploitation
▶ Offline data can be adaptive and only needs to cover the data

of the optimal policy in the training contexts
▶ NeuraLCB achieves Õ(κ ·max{

√
d̃ , 1} · n−1/2), subliner rate

▶ More statistically efficient than NeuralUCB by a factor of
√

d̃
and more computationally efficient (from O(n2) to O(n))

▶ NeuraLCB performs well empirically
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Thank you!
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