
1/19

Offline Neural Contextual Bandits: Pessimism,
Optimization and Generalization

ICLR’22

Thanh Nguyen-Tang†, Sunil Gupta†, A.Tuan Nguyen‡, Svetha
Venkatesh†

March 13, 2022

†: Deakin University; ‡: University of Oxford

2/19

Outline

▶ Background
▶ Offline policy learning for contextual bandits
▶ Deep neural networks

▶ Algorithm – NeuraLCB
▶ Use a neural network to learn the reward
▶ Use neural network’s gradients for pessimistic exploitation
▶ Lower confidence bound strategy
▶ Stochastic gradient descent for optimization
▶ Stream offline data for generalization and adaptive offline data

▶ Main theory
▶ Neural tangent kernel matrix + effective dimension +

single-policy concentration
▶ Õ(κ

√
d̃n−1/2) regret, where κ is distributional shift measure,

d̃ is effective dimension, n is the number of offline samples

2/19

Outline

▶ Background
▶ Offline policy learning for contextual bandits
▶ Deep neural networks

▶ Algorithm – NeuraLCB
▶ Use a neural network to learn the reward
▶ Use neural network’s gradients for pessimistic exploitation
▶ Lower confidence bound strategy
▶ Stochastic gradient descent for optimization
▶ Stream offline data for generalization and adaptive offline data

▶ Main theory
▶ Neural tangent kernel matrix + effective dimension +

single-policy concentration
▶ Õ(κ

√
d̃n−1/2) regret, where κ is distributional shift measure,

d̃ is effective dimension, n is the number of offline samples

2/19

Outline

▶ Background
▶ Offline policy learning for contextual bandits
▶ Deep neural networks

▶ Algorithm – NeuraLCB
▶ Use a neural network to learn the reward
▶ Use neural network’s gradients for pessimistic exploitation
▶ Lower confidence bound strategy
▶ Stochastic gradient descent for optimization
▶ Stream offline data for generalization and adaptive offline data

▶ Main theory
▶ Neural tangent kernel matrix + effective dimension +

single-policy concentration
▶ Õ(κ

√
d̃n−1/2) regret, where κ is distributional shift measure,

d̃ is effective dimension, n is the number of offline samples

3/19

Background – offline K -armed contextual bandits

▶ Online setting: At each round t,
▶ Agent observes K d-dimensional contextual vectors
{xt,a ∈ Rd : a ∈ [K]}

▶ Agent takes an action at and observe reward rt ∼ P(·|xt,at)
▶ Value: vπ(x) = Ea∼π(·|x),r∼P(·|xa)[r]
▶ Optimal value: v∗(x) = maxπ vπ(x)
▶ Optimal policy: π∗ = arg maxπ vπ

▶ Offline policy learning (OPL) setting
▶ Offline data Dn = {(xt , at , rt)}n

t=1: collected a priori by an
unknown and possibly adaptive behaviour policy µ

▶ Goal: Learn π̂ from Dn with small sub-optimality:

SubOpt(π̂︸︷︷︸
data-dependent

) := Ex∼ρ[SubOpt(π̂; x)]

= Ex∼ρ︸ ︷︷ ︸
generalize to all contexts

[v∗(x)− v π̂(x)].

3/19

Background – offline K -armed contextual bandits

▶ Online setting: At each round t,
▶ Agent observes K d-dimensional contextual vectors
{xt,a ∈ Rd : a ∈ [K]}

▶ Agent takes an action at and observe reward rt ∼ P(·|xt,at)
▶ Value: vπ(x) = Ea∼π(·|x),r∼P(·|xa)[r]
▶ Optimal value: v∗(x) = maxπ vπ(x)
▶ Optimal policy: π∗ = arg maxπ vπ

▶ Offline policy learning (OPL) setting
▶ Offline data Dn = {(xt , at , rt)}n

t=1: collected a priori by an
unknown and possibly adaptive behaviour policy µ

▶ Goal: Learn π̂ from Dn with small sub-optimality:

SubOpt(π̂︸︷︷︸
data-dependent

) := Ex∼ρ[SubOpt(π̂; x)]

= Ex∼ρ︸ ︷︷ ︸
generalize to all contexts

[v∗(x)− v π̂(x)].

4/19

Background – General reward function

Reward generation

rt = h(xt,at) + ξt , h(·) ∈ [0, 1],

ξt ∼ R-subgaussian|{(xτ , aτ , rτ)}1≤τ≤t−1, xt , at

Including many contextual bandit problems:
▶ Linear contextual bandit: h(x) = ⟨x, θ⟩, ∥x∥ ≤ 1, ∥θ∥ ≤ 1
▶ Generalized linear bandit:

h(x) = g(⟨x, θ⟩), ∥x∥ ≤ 1, ∥θ∥ ≤ 1, ∥∇g∥ ≤ 1
▶ Kernelized bandit: h(x) in a norm-bounded RKHS

h is unknown and can be non-linear

Use a universal function approximator, e.g. neural networks

4/19

Background – General reward function

Reward generation

rt = h(xt,at) + ξt , h(·) ∈ [0, 1],

ξt ∼ R-subgaussian|{(xτ , aτ , rτ)}1≤τ≤t−1, xt , at

Including many contextual bandit problems:
▶ Linear contextual bandit: h(x) = ⟨x, θ⟩, ∥x∥ ≤ 1, ∥θ∥ ≤ 1
▶ Generalized linear bandit:

h(x) = g(⟨x, θ⟩), ∥x∥ ≤ 1, ∥θ∥ ≤ 1, ∥∇g∥ ≤ 1
▶ Kernelized bandit: h(x) in a norm-bounded RKHS

h is unknown and can be non-linear

Use a universal function approximator, e.g. neural networks

5/19

Background – Deep neural networks

fW (x) =
√

mWLσ (WL−1σ (. . . σ(W1x) . . .)) ,∀u ∈ Rd ,

W (0)
l ∼ N (0, Θ(1/m)I) (initialization)

▶ σ(·) = max{·, 0} is ReLU function
▶ W1 ∈ Rm×d , Wi ∈ Rm×m, ∀i ∈ [2, L− 1], WL ∈ Rm×1

▶ W := (W1, . . . , WL), vec(W) ∈ Rp, p = md + m + m2(L− 2)
▶ Gradient: ∇fW ∈ Rp

6/19

Question

▶ Neural network-based offline policy learning [Nguyen-Tang
et al., 2021, Uehara et al., 2021]

▶ But they require
▶ Strong uniform data coverage: π(a|x)

µ(a|x) ≤ C <∞,∀π,∀x, a
▶ Intractable optimization oracle: f̂ = arg minf ∈F L(f)
▶ i.i.d. data: Dn = {(xt , at , rt)}n

t=1 are independent
▶ functional assumption on the reward function

Can we design a computationally efficient neural network-
based OPL algorithm that can
▶ learn a general reward function,
▶ require a weaker data coverage assumption, and
▶ work on adaptive offline data?

6/19

Question

▶ Neural network-based offline policy learning [Nguyen-Tang
et al., 2021, Uehara et al., 2021]

▶ But they require
▶ Strong uniform data coverage: π(a|x)

µ(a|x) ≤ C <∞,∀π,∀x, a
▶ Intractable optimization oracle: f̂ = arg minf ∈F L(f)
▶ i.i.d. data: Dn = {(xt , at , rt)}n

t=1 are independent
▶ functional assumption on the reward function

Can we design a computationally efficient neural network-
based OPL algorithm that can
▶ learn a general reward function,
▶ require a weaker data coverage assumption, and
▶ work on adaptive offline data?

7/19

Question

Can we design a computationally efficient neural network-
based OPL algorithm that can
▶ learn a general reward function,
▶ require a weaker data coverage assumption, and
▶ work on adaptive offline data?

Yes! NeuraLCB
▶ neural network to model reward function, LCB strategy for

pessimistic exploitation
▶ Stochastic gradient descent for optimization
▶ Stream offline data to handle generalization and adaptive data

Provable learning: Õ(κ ·
√

d̃ · n−1/2) sub-optimality. Compared to
online counterpart [Zhou et al., 2020],
▶ bound improved by a factor of

√
d̃

▶ computation: from O(n2) to O(n)

7/19

Question

Can we design a computationally efficient neural network-
based OPL algorithm that can
▶ learn a general reward function,
▶ require a weaker data coverage assumption, and
▶ work on adaptive offline data?

Yes! NeuraLCB
▶ neural network to model reward function, LCB strategy for

pessimistic exploitation
▶ Stochastic gradient descent for optimization
▶ Stream offline data to handle generalization and adaptive data

Provable learning: Õ(κ ·
√

d̃ · n−1/2) sub-optimality. Compared to
online counterpart [Zhou et al., 2020],
▶ bound improved by a factor of

√
d̃

▶ computation: from O(n2) to O(n)

8/19

NeuraLCB – Lower confidence bounds

Stream the data Dn = {(xt , at , rt)}nt=1 sequentially one by one. At
each step t,
▶ Retrieve (xt , at , rt) from Dn
▶ Compute LCB

Lt(·) := fW (t−1)(·)︸ ︷︷ ︸
mean

−βt−1 ∥∇fW (t−1)(·) ·m−1/2∥Λ−1
t−1︸ ︷︷ ︸

variance

▶ Extract policy π̂t(x)← arg maxa∈[K] Lt(xa), where
x = {xa ∈ Rd : a ∈ [K]}

Output: Uniformly sample π̂ from {π̂1, . . . , π̂n}

8/19

NeuraLCB – Lower confidence bounds

Stream the data Dn = {(xt , at , rt)}nt=1 sequentially one by one. At
each step t,
▶ Retrieve (xt , at , rt) from Dn
▶ Compute LCB

Lt(·) := fW (t−1)(·)︸ ︷︷ ︸
mean

−βt−1 ∥∇fW (t−1)(·) ·m−1/2∥Λ−1
t−1︸ ︷︷ ︸

variance

▶ Extract policy π̂t(x)← arg maxa∈[K] Lt(xa), where
x = {xa ∈ Rd : a ∈ [K]}

Output: Uniformly sample π̂ from {π̂1, . . . , π̂n}

8/19

NeuraLCB – Lower confidence bounds

Stream the data Dn = {(xt , at , rt)}nt=1 sequentially one by one. At
each step t,
▶ Retrieve (xt , at , rt) from Dn
▶ Compute LCB

Lt(·) := fW (t−1)(·)︸ ︷︷ ︸
mean

−βt−1 ∥∇fW (t−1)(·) ·m−1/2∥Λ−1
t−1︸ ︷︷ ︸

variance

▶ Extract policy π̂t(x)← arg maxa∈[K] Lt(xa), where
x = {xa ∈ Rd : a ∈ [K]}

Output: Uniformly sample π̂ from {π̂1, . . . , π̂n}

8/19

NeuraLCB – Lower confidence bounds

Stream the data Dn = {(xt , at , rt)}nt=1 sequentially one by one. At
each step t,
▶ Retrieve (xt , at , rt) from Dn
▶ Compute LCB

Lt(·) := fW (t−1)(·)︸ ︷︷ ︸
mean

−βt−1 ∥∇fW (t−1)(·) ·m−1/2∥Λ−1
t−1︸ ︷︷ ︸

variance

▶ Extract policy π̂t(x)← arg maxa∈[K] Lt(xa), where
x = {xa ∈ Rd : a ∈ [K]}

Output: Uniformly sample π̂ from {π̂1, . . . , π̂n}

9/19

NeuraLCB – Update parameters
▶ Update the empirical covariance matrix Λt , where Λ0 = λI:

Λt ← Λt−1 + vec(∇fW (t−1)(xt,at)) · vec(∇fW (t−1)(xt,at))T /m︸ ︷︷ ︸
dynamical as W (t−1) changes with t

▶ Update W (t) using stochastic gradient descent:

W (t) ←W (t−1) − ηt∇Lt(W (t−1))︸ ︷︷ ︸
SGD

where Lt(W) = 1
2(fW (xt,at)− rt)2 + mλ

2 ∥W −W (0)∥2F︸ ︷︷ ︸
ridge regression

.

Compared to parameter update in NeuralUCB [Zhou et al., 2020],
▶ NeuralUCB: train a new net from scratch at each t, O(n2)

update steps
▶ NeuraLCB: re-uses the trained parameters from the prev.

iter., O(n) update steps

9/19

NeuraLCB – Update parameters
▶ Update the empirical covariance matrix Λt , where Λ0 = λI:

Λt ← Λt−1 + vec(∇fW (t−1)(xt,at)) · vec(∇fW (t−1)(xt,at))T /m︸ ︷︷ ︸
dynamical as W (t−1) changes with t

▶ Update W (t) using stochastic gradient descent:

W (t) ←W (t−1) − ηt∇Lt(W (t−1))︸ ︷︷ ︸
SGD

where Lt(W) = 1
2(fW (xt,at)− rt)2 + mλ

2 ∥W −W (0)∥2F︸ ︷︷ ︸
ridge regression

.

Compared to parameter update in NeuralUCB [Zhou et al., 2020],
▶ NeuralUCB: train a new net from scratch at each t, O(n2)

update steps
▶ NeuraLCB: re-uses the trained parameters from the prev.

iter., O(n) update steps

10/19

NeuraLCB – Confidence radius
▶ Under overparameterized setting (m≫ 1):

∥W ∗ −W (t)∥Λt ≤ βt where

βt := (
√

2m−1/2S︸ ︷︷ ︸
∥W ∗−W (0)∥F

+ t1/2λ−1/2m−1/2︸ ︷︷ ︸
∥W (t)−W (0)∥F via SGD

)
√

λ + C2
3 tL︸ ︷︷ ︸√

∥Λt∥

W ∗: network params that interpolate h in the training contexts

Compared to NeuralUCB [Zhou et al., 2020],

βt = O(m−1/12t7/12L2λ−7/12(
√

λS + ν
√

d̃ log(1 + tK/λ)))
+O(m−1/6t19/6L9/2λ−13/6)

Our confidence radius does not depend on d̃
▶ much simpler and tighter
▶ Key: Don’t regress toward the minimizer of the least

squared problem in the linear case.

10/19

NeuraLCB – Confidence radius
▶ Under overparameterized setting (m≫ 1):

∥W ∗ −W (t)∥Λt ≤ βt where

βt := (
√

2m−1/2S︸ ︷︷ ︸
∥W ∗−W (0)∥F

+ t1/2λ−1/2m−1/2︸ ︷︷ ︸
∥W (t)−W (0)∥F via SGD

)
√

λ + C2
3 tL︸ ︷︷ ︸√

∥Λt∥

W ∗: network params that interpolate h in the training contexts

Compared to NeuralUCB [Zhou et al., 2020],

βt = O(m−1/12t7/12L2λ−7/12(
√

λS + ν
√

d̃ log(1 + tK/λ)))
+O(m−1/6t19/6L9/2λ−13/6)

Our confidence radius does not depend on d̃
▶ much simpler and tighter
▶ Key: Don’t regress toward the minimizer of the least

squared problem in the linear case.

11/19

Main theorem – Assumptions

Assumption
∃λ0 > 0 such that H ⪰ λ0I where H is the neural tangent kernel
matrix [Arora et al., 2019, Du et al., 2019b,a, Cao and Gu, 2019]
on training contexts {x(i)}i∈[nK]

▶ Satisfied if no two contexts in {x(i)}i∈[nK] are parallel.
▶ λ0 ≥ Ω(d) under mild input condition [Nguyen et al., 2021]

12/19

Main theorem – Assumptions

Assumption
▶ xt is independent of Dt−1 = {(xτ , aτ , rτ)}τ∈[t−1],
▶ ∃κ ∈ (0,∞),

∥∥∥ π∗(·|xt)
µ(·|Dt−1,xt)

∥∥∥
∞
≤ κ,∀t ∈ [n].

▶ the first part is minimal,
▶ e.g. when {xt}n

t=1
i.i.d.∼ ρ.

▶ at can still depend on Dt−1 and xt

▶ the second part only requires that µ has sufficient coverage
over only π∗ only in the observed contexts
▶ weaker than any other existing data coverage assumptions for

OPL

12/19

Main theorem – Assumptions

Assumption
▶ xt is independent of Dt−1 = {(xτ , aτ , rτ)}τ∈[t−1],
▶ ∃κ ∈ (0,∞),

∥∥∥ π∗(·|xt)
µ(·|Dt−1,xt)

∥∥∥
∞
≤ κ,∀t ∈ [n].

▶ the first part is minimal,
▶ e.g. when {xt}n

t=1
i.i.d.∼ ρ.

▶ at can still depend on Dt−1 and xt

▶ the second part only requires that µ has sufficient coverage
over only π∗ only in the observed contexts
▶ weaker than any other existing data coverage assumptions for

OPL

13/19

Main theorem – Definition

Definition
Effective dimension d̃ = log det(I + H/λ)/ log(1 + nK/λ) [Zhou
et al., 2020, Valko et al., 2013, Yang and Wang, 2020, Yang et al.,
2020]

▶ d̃ measures how quickly the eigenvalues of H decays
▶ d̃ = O(log n) in some typical cases

14/19

Main theorem – sub-optimality bound

Theorem
Set learning rates ηt = ι√

t where

ι−1 = Ω(n2/3m5/6λ−1/6L17/6 log1/2 m) ∨ Ω(mλ1/2 log1/2(nKL2(10n)/δ)),

under overparameterization, w.p. at least 1− δ,

E[SubOpt(π̂)] = Õ(κ ·max{
√

d̃ , 1} · n−1/2)

▶ the bound does not depend on p
▶ Compared to NeuralUCB [Zhou et al., 2020]:

√
d̃-improved

▶ NeuralUCB: O(d̃n−1/2) regret
▶ Minimax lower bound regret [Chu et al., 2011]: Ω(

√
dn−1/2)

14/19

Main theorem – sub-optimality bound

Theorem
Set learning rates ηt = ι√

t where

ι−1 = Ω(n2/3m5/6λ−1/6L17/6 log1/2 m) ∨ Ω(mλ1/2 log1/2(nKL2(10n)/δ)),

under overparameterization, w.p. at least 1− δ,

E[SubOpt(π̂)] = Õ(κ ·max{
√

d̃ , 1} · n−1/2)

▶ the bound does not depend on p
▶ Compared to NeuralUCB [Zhou et al., 2020]:

√
d̃-improved

▶ NeuralUCB: O(d̃n−1/2) regret
▶ Minimax lower bound regret [Chu et al., 2011]: Ω(

√
dn−1/2)

15/19

Main theorem – Comparison

16/19

Takehome messages
▶ NeuraLCB uses a neural net to learn the reward and LCB

strategy for pessimistic exploitation
▶ Offline data can be adaptive and only needs to cover the data

of the optimal policy in the training contexts
▶ NeuraLCB achieves Õ(κ ·max{

√
d̃ , 1} · n−1/2), subliner rate

▶ More statistically efficient than NeuralUCB by a factor of
√

d̃
and more computationally efficient (from O(n2) to O(n))

▶ NeuraLCB performs well empirically

0 2000 4000 6000 8000 10000 12000 14000
Number of samples

0.2

0.4

0.6

0.8

Su
b-

op
tim

al
ity NeuraLCB

NeuralGreedy
LinLCB
NeuralLinLCB
NeuralLinGreedy
KernLCB

Thank you!

17/19

References I
Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan

Salakhutdinov, and Ruosong Wang. On exact computation with
an infinitely wide neural net. arXiv preprint arXiv:1904.11955,
2019.

Yuan Cao and Quanquan Gu. Generalization bounds of stochastic
gradient descent for wide and deep neural networks. Advances in
Neural Information Processing Systems, 32:10836–10846, 2019.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual
bandits with linear payoff functions. In Proceedings of the
Fourteenth International Conference on Artificial Intelligence and
Statistics, pages 208–214. JMLR Workshop and Conference
Proceedings, 2011.

Simon S. Du, Jason D. Lee, Haochuan Li, Liwei Wang, and Xiyu
Zhai. Gradient descent finds global minima of deep neural
networks. In ICML, volume 97 of Proceedings of Machine
Learning Research, pages 1675–1685. PMLR, 2019a.

18/19

References II

Simon S. Du, Xiyu Zhai, Barnabás Póczos, and Aarti Singh.
Gradient descent provably optimizes over-parameterized neural
networks. In ICLR (Poster). OpenReview.net, 2019b.

Quynh Nguyen, Marco Mondelli, and Guido F Montufar. Tight
bounds on the smallest eigenvalue of the neural tangent kernel
for deep relu networks. In International Conference on Machine
Learning, pages 8119–8129. PMLR, 2021.

Thanh Nguyen-Tang, Sunil Gupta, Hung Tran-The, and Svetha
Venkatesh. Sample complexity of offline reinforcement learning
with deep relu networks, 2021.

Masatoshi Uehara, Masaaki Imaizumi, Nan Jiang, Nathan Kallus,
Wen Sun, and Tengyang Xie. Finite sample analysis of minimax
offline reinforcement learning: Completeness, fast rates and
first-order efficiency. arXiv preprint arXiv:2102.02981, 2021.

19/19

References III

Michal Valko, Nathaniel Korda, Rémi Munos, Ilias Flaounas, and
Nelo Cristianini. Finite-time analysis of kernelised contextual
bandits. arXiv preprint arXiv:1309.6869, 2013.

Lin Yang and Mengdi Wang. Reinforcement learning in feature
space: Matrix bandit, kernels, and regret bound. In International
Conference on Machine Learning, pages 10746–10756. PMLR,
2020.

Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, and
Michael I Jordan. On function approximation in reinforcement
learning: Optimism in the face of large state spaces. arXiv
preprint arXiv:2011.04622, 2020.

Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual
bandits with ucb-based exploration. In International Conference
on Machine Learning, pages 11492–11502. PMLR, 2020.

	References

