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Why Offline RL?

• Can be extremely costly to run
• Can lead to unsafe/unethical behaviors

• Can be more feasible in many domains
• Can enable better generalization by utilizing 

large datasets & diverse prior experiences 
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Why (offline) RL with function approximation?

• We will never get enough data to learn each state individually 

Game of Go:  > 10!"#

$𝒪(S) samples: impractical, 
where 𝑆 = state space size

We need a new mechanism: 
• generalize from collected states to unvisited states



Episodic MDP 
Episodic time-inhomogeneous Markov decision process 

ℳ = 𝒮,𝒜,H, P, r, d!
• State space 𝒮
• Action space 𝒜
• Episode length 𝐻:
• Agent interacts with MDP for 𝐻 steps and then restart the episode 

• Transition kernels P = P!, … , P$ , where P% : 𝒮×𝒜 → Δ 𝒮
• Reward functions r = (r!, … , r$), where r% ∶ 𝒮×𝒜 → 0,1
• Initial state distribution d! ∈ Δ(𝒮)
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Episodic MDP

• A policy π = π% %∈ $ where π%: 𝒮 → Δ 𝒜
• Action-value functions:

Q%
' s, a = 𝔼' ∑()!$ r(| s%, a% = (s, a)

• Value functions
V%
' s = 𝔼' ∑()!$ r(| s% = s

• The optimal policy π∗ maximizes V!+ 5



Dynamic Programming and Bellman Equation

• Optimal action-value functions Q∗ = Q%∗ %∈ $

• Optimal value functions V∗ = V%∗ %∈ $ , V%∗ s = max
,
Q%∗ s, a

• Optimal policy π∗is greedy wrt Q∗

Q%
∗ s, a = r% s, a + 𝔼-!∼/"(⋅|-,,) V%5!

∗ (s′)

67889,: ;<7=,>;= 𝔹": 𝔹"A"#$
∗

• Bellman equation 
Q%∗ = 𝔹%Q%5!∗ , Q$5!∗ = 0
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Offline RL with Value Function Approximation

• Offline dataset: collected a priori, 𝒟 = s%
> , a%

> , r%
>

%∈ $
>∈ B

• 𝑎%&~ 𝜇%& (⋅ |𝑠%&), 𝑠%'$& ~ 𝑃% ⋅ 𝑠%& , 𝑎%&
• µ = (µ$, … , µ() is the behavior policy
• Data were adaptively collected 
• K: # number of episodes 

• No further interactions with MDP 
• Learning objective: value suboptimality 

SubOpt Nπ; s! = V!∗ s! − V!C'(s!)
where Nπ = OfRlineRLAlgo 𝒟, ℱ , ℱ is some function class (e.g., neural 
networks)
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This talk

How to design provably (instance-)efficient offline RL algorithms 
in the function approximation setting 

with the mildest data collection assumption possible? 

• Instance-efficient: the algorithm should be able to leverage instance-specific information to accelerate the learning 
• Efficient:

• Sample-efficient: required # of samples is independent of the state space size (and polynomial in other problem 
factors)

• Runtime-efficient: the algorithm runs in polynomial time
• Mild data collection assumption: the offline data does not need to cover the entire state-action space and it can be 

collected adaptively by running some adaptive algorithm.



Offline RL with linear function approximation
• Existing algorithms obtain finite value suboptimality in K episodes and nearly match the lower 

bound

• Lower bound: Ω H!.#S$.#κ∗$.#K&$.# where κ∗ = sup
',)!,*!

+"!
∗
()!,*!)

+!
$()!,*!)

is single-policy 

concentrability coefficient [Rashidinejad et al., (2021)] 
• APVI [Yin et al., (2022)] achieves M𝒪 H!.#S$.#κ∗$.#K&$.#

• Limitations: inefficient when S is large (e.g., when 𝑆 = 10!./ in the game of Go)

• Solutions: Linear MDP 

A MDP ℳ is a linear MDP if there exist some known feature mapping 𝜙%: 𝒮×𝒜 →
ℝ), unknown vectors 𝜃% %∈[,] and unknown measures 𝜈% %∈ , such that 

𝑟% 𝑠, 𝑎 = 𝜙% 𝑠, 𝑎 .𝜃% and ℙ% 𝑠/ 𝑠, 𝑎 = 𝜙% 𝑠, 𝑎 .𝜈%(𝑠′)



PEVI Algorithm (Jin et al., 2021): LSVI + LCB

• @𝒪 H"d$.1 K23.1 (under uniform coverage) and @𝒪 H"d$.1 κ∗3.1 K23.1 (under 
single-policy concentrability) (our work)

• Lower bound: Ω H κ∗3.1 K23.1 (our work)
• Independent of S



Minimax to instance-dependent bounds

• Minimax bounds: 
• Advantages: hold for all instances, even in the worst case
• Limitations: assuming a worst-case setting is too pessimistic
• In many natural settings, offline RL can be faster than !

R

• We argue that to circumvent the minimax lower bounds and explain 
the rates we observe in practical settings, we should consider the 
intrinsic instance-dependent structure of the underlying MDP



Hu et al. (2021) 
• Let Δ! s, a ≔ V!∗ s − Q!∗ (s, a). 
• Let Δ! s ∈ inf

#
Δ! s, a ∶ Δ! s, a > 0 (if inf

$
Δ% 𝑠, 𝑎 ∶ Δ% 𝑠, 𝑎 > 0 = ∅, Δ% 𝑠 = 0)

• Probabilistic gap assumption: sup
&
P'∼)! 0 < Δ! s ≤ δ ≤ *

*"

+

• Fitted Q-Iteration (FQI) in linear case: 𝒪(𝐾,-) (i.e., 𝛼 = 1)
• Advantages: hold for various function classes and use a “weak” version of gap 

assumption 
• Limitations: 

• Strong assumption in data coverage: uniform feature coverage 
λ./0 𝔼 ',# ∼)#

$ ϕ! s, a ϕ! s, a 2 > 0
• Data were not collected adaptively 



Wang et al. (2022)

• Gap assumption
• Subsampled VI-LCB: M𝒪 H0S κ∗ Δ123K&!

• Lower bound: Ω H/S κ∗Δ123K&!

• Zero value suboptimality when K = M𝒪 H4Δ123&/ P&! where P:= min
',),*: +!

∗ ),* 6$
d'
7(s, a)

• Lower bound: K = Ω H Δ123&/ P&!

• Limitations: 
• Scales with 𝑆 and the techniques only works for tabular MDPs 
• Episodes were collected independently

Gap assumption (Simchowitz & Jamieson, 2019; Yang et al., 2021; He et al., 2021): 
Let Δ5 s, a ≔ V5∗ s − Q5∗ (s, a). Assume that Δ678 ≔ inf

%,:,;
{

}
Δ% 𝑠, 𝑎 ∶ Δ% 𝑠, 𝑎 >

0 is strictly positive 



Adaptively collected data

• The dataset were collected by running an adaptive learning algorithm, 
e.g., in adaptive experiments, recommender’s systems
• More formally, data at episode ℎ, 𝑠Z[ , 𝑎Z[ , 𝑟Z[ Z∈ \ is generated by 𝜇[

which depends on all the data in the previous 𝑡 − 1 episodes
• Existing instance-dependent bounds either 

a) Scale with state space size 𝑆 [Wang et al., 2022]
b) Require strong uniform data coverage assumption [Wu et al., 2021]
c) Require independently collected data [Wu et al., 2021; Wang et al., 2022]

We address these limitations with linear MDPs!



Our algorithm: LSVI + LCB 
+ Bootstrapping + Constrained policy
• Built upon PEVI algorithm [Jin et al., 2021] with 
two additional modifications:

• Bootstrapping

• Constrained policy extraction: �̂�%
< ← argmax=:= ?@AABCDEF GH I [𝑄%<, 𝜋 𝒜

• Given the policy ensemble 

π̂K: k ∈ K + 1 , we consider two execution policies: 
• Last-iteration policy: π̂LM?D = π̂('$

• Mixture policy: π̂67N = $
(
∑KO$( π̂K



Our results: Gap-dependent bounds

• Let κ∗ = max
"∈[%]

κ" where	𝜅'() = inf d"
* s, a d"

* s, a > 0

• Partial data coverage: ∀ h, s, a , d"∗ s, a > 0 ⇒ d"
* s, a > 0

• Value suboptimality upper bound: 6𝒪 d+ H, κ∗+ Δ-./() K()
• Independent of state space size S
• The first result that scales with 𝐾() under linear MDP, gap assumption, 

partial data coverage, and adaptively collected data
• Lower bound: Ω(H0κ-./Δ-./() K())
• Our upper bound is tight in K and Δ-./

• Techniques: count the number of times the empirical gaps exceed a certain 
value + peeling technique 



Our results: Leverage “good” linear features 
for faster-than-K!" rates 
• Let λ678' be the smallest positive eigenvalue of 𝔼 :,; ∼)!

∗ 𝜙% 𝑠, 𝑎 𝜙% 𝑠, 𝑎 .

• Let k∗ = Ω(d_H!`κ∗_Δ9(:a! λ9(:5 a# + κ∗$ λ9(:5 a!)

• We have: SubOpt g𝜋b = 0 ∀𝑘 ≥ 𝑘∗



Our other results 



Summary

We now have a provably (instance-)efficient algorithm for linear 
function approximation with polynomial sample and runtime 

Algorithm: LSVI + LCB + Bootstrapping + Constrained policy extraction, 
under linear assumptions 

Sample complexity: 
• Gap-dependent: $𝒪 dc Hd κ∗c Δ9(:a! ϵa!

• “Good” linear features: $𝒪(d_H!`κ∗_Δ9(:a! λ9(:5 a# + κ∗$ λ9(:5 a!)



Thank you
See our poster and arXiv version (https://arxiv.org/abs/2211.13208) for more details
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