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Why Offline RL?

Reinforcement Learning with Online Interactions

% Can be extremely costly to run
Environment

y Can lead to unsafe/unethical behaviors

Environment

Can be more feasible in many domains
Can enable better generalization by utilizing
large datasets & diverse prior experiences

Offline Agent )

Image credit: Agarwal and Norouzi (2020)



Why (offline) RL with function approximation?

* We will never get enough data to learn each state individually

:;_o: | - e Game of Go: > 10172

.3? § i‘ O(S) samples: impractical,
| where S = state space size
3.3 3. H :‘f P

We need a new mechanism:
* generalize from collected states to unvisited states



Episodic MDP

Episodic time-inhomogeneous Markov decision process
M — (5) ch, HJ P) L, dl) state 5, € 5 > action aj, € A

e + Agent

 State space &

]
1 reward 1, = 1;(sy, a5) € [0,1]
: next state s, ~ P,(|s,,a,) €S

* Action space A

Environment <

* Episode length H:
* Agent interacts with MDP for H steps and then restart the episode

* Transition kernels P = (P, ..., Py), where Py, : §XA — A(S)
* Reward functionsr = (14, ..., Iyg), Wherery, : SXA — [0,1]
* Initial state distribution d; € A(S)



Episodic MDP UM TR T

m(s) 75(8,) 705(83) 7 (Sgy) Policy
al a2 a3 a H Action
r(s),a,) r(sy, ay) r(s3, az) r(Sy, ay) Reward

[E[r1 + @ + @+t rH]=J(]z)

* A policy T = {Ttp }peruy where m,: § = A(A)
* Action-value functions:
Qn(s,a) = IET[[Z?=1 ril(sn,an) = (s, a)]
* Value functions
Vi (s) = Ex[Xily1il s = s}
* The optimal policy m* maximizes V{*



Dynamic Programming and Bellman Equation

* Optimal action-value functions Q" = {Q}, }herm

* Optimal value functions V* = {V} }herny » Vh(s) = max Qy (s, a)
d
e Optimal policy t"is greedy wrt Q*

Qn(s,a) =r(s,a) + Egop, (152 Vi1 ()]

N —

Bellman operator By: By Vi,
* Bellman equation

Q; — IBthle ’ Q;I+1 =0



Offline RL with Value Function Approximation

. . te[K]
* Offline dataset: collected a priori, D = {(sfl, ay, r}tl)}he[H]
* ap~ (IS8, Shar~ Pr(: sk, ak)
e u=(ut, ..., %) is the behavior policy
* Data were adaptively collected
* K: # number of episodes
* No further interactions with MDP

* Learning objective: value suboptimality R
SubOpt(T; s;) = Vi (s1) — Vi (51)

where T = OfflineRLAlgo(D, F), F is some function class (e.g., neural
networks)



This talk

How to design provably (instance-)efficient offline RL algorithms
in the function approximation setting
with the mildest data collection assumption possible?



Oftline RL with linear function approximation

* Existing algorithms obtain finite value suboptimality in K episodes and nearly match the lower
bound

d™h (Sh,an) .

* Lower bound: Q(H'>S%°k%°K~%>) where k, = sup is single-policy

h,sh,ah dﬁ(sh'ah)
concentrability coefficient [Rashidinejad et al., (2021)]

 APVI [Yin et al., (2022)] achieves O (H*>S%>k9->K=0->)

« Limitations: inefficient when S is large (e.g., when S = 10172 in the game of Go)

e Solutions: Linear MDP

A MDP M is a linear MDP if there exist some known feature mapping ¢ : S XA —
R4, unknown vectors {On}nen) and unknown measures {vp }pepy) such that

Th(S, Cl) — ¢h(S, a)Teh and [P)h(Sllsi Cl) — (Ph(S, a)th(S,)



PEVI Algorithm (Jin et al., 2021): LSVI + LCB

Algorithm 2 Pessimistic Value Iteration (PEVI): Linear MDP
1: Input: Dataset D = {(z}, a;,r;)}f;il.
2: Initialization: Set ‘7H+1(-) < 0.
3: forsteph=H,H—-1,...,1do
4 Set Ap « 3K d(z],af)d(z],af)T + A- 1.

5. Set Wp A;I(Zf‘;l é(z,,ap) - (ry, + ‘7}14_1(1';;_*_1))). //Estimation
6:  Set Tp(-,-) < B (6(-, ) TA o(:, ) Y2 //Uncertainty
7. Set Q,(+,-) « ¢(-,-) T@p — Tu(-,-). //Pessimism
8  Set Qu(-,-) < min{Q,(-,-), H — h+ 1}+. / /Truncation
9:  Set 7h(-|-) < argmax, (Qn(-"), mh(- ) 4. //Optimization
10:  Set V() < (Qn(, ), 7n(-| ) a. / /Evaluation
11: end for

12: Output: Pess(D) = {7} ,.

« O(H?d"> K=%>) (under uniform coverage) and O (H?d> k%> K~%>) (under
single-policy concentrability) (our work)

e Lower bound: Q(H k%> K~=%°) (our work)

* Independent of S



Minimax to instance-dependent bounds

* Minimax bounds:
e Advantages: hold for all instances, even in the worst case
* Limitations: assuming a worst-case setting is too pessimistic

: . 1
* In many natural settings, offline RL can be faster than N

* We argue that to circumvent the minimax lower bounds and explain
the rates we observe in practical settings, we should consider the
intrinsic instance-dependent structure of the underlying MDP



Hu et al. (2021)

Let Ap(s,a) == Vi (s) — Q}(s,a).
Let Ay (s) € igf{Ah(s, a) : Ay (s,a) > 0} (if igf{Ah(s, a) : Ap(s,a) >0} =0,A,(s) =0)

a
Probabilistic gap assumption: sup Ps_qr(0 < An(s) < 8) < ()
T

0
Fitted Q-lteration (FQI) in linear case: O(K 1) (i.e., « = 1)

Advantages: hold for various function classes and use a “weak” version of gap
assumption

Limitations:
* Strong assumption in data coverage: uniform feature coverage

Amin (Bgsay~as [4n(5,2) on(s,)™T) > 0
* Data were not collected adaptively



Wang et al. (2022)

Gap assumption (Simchowitz & Jamieson, 2019; Yang et al., 2021; He et al., 2021):

Let Ay (s,a) == Vi (s) — Q}(s,a). Assume that Ay, == hinf {AL(s,a) : Ay(s,a) >
S,a

0} is strictly positive

* Gap assumption
* Subsampled VI-LCB: O(H*S k, ApinK™1)
e Lower bound: Q(H?S 1, Ay K™1)

» Zero value suboptimality when K = O(H3A5,P~1) where P: = h,s,a:g%i(g,abo d (s, a)

» Lower bound: K = Q(H AL, P71)

* Limitations:
* Scales with S and the techniques only works for tabular MDPs
* Episodes were collected independently




Adaptively collected data

* The dataset were collected by running an adaptive learning algorithm,
e.g., in adaptive experiments, recommender’s systems

* More formally, data at episode h, (sy, ay, 17 ne[n] is generated by p,
which depends on all the data in the previous t — 1 episodes

* Existing instance-dependent bounds either
a) Scale with state space size S [Wang et al., 2022]
b) Require strong uniform data coverage assumption [Wu et al., 2021]
c) Require independently collected data [Wu et al., 2021; Wang et al., 2022]

We address these limitations with linear MDPs!



Our algorithm: LSVI + LCB
+ Bootstrapping + Constrained policy

Algorithm 1 Bootstrapped and Constrained Pessimistic Value Iteration (BCP-VI)

+ Built upon PEVI algorithm [Jin et al., 2021] with It D D= (L, sy i 5, i
tion hyperparameter A, p-supported policy class {IIj(u) } e c[H]"
L. . . 2forAkk;l,...,K+1do
two additional modifications: R e 1do
9% - QK 5 Bk ¢ i on(shaf) - on(shaf)T + A L.
r A S 6: wi’i — (22)41 th_f én(sh,af) - (rf, + th+1(52+1))'
9% 5 & : 7: BE () < B - ll¢n(:, ')||(z;g)—1~
: 27 - 8 Q) = (Bn(), @) = BiC, ).
* Bootstrapping — N QZ( ) < i M HR 1y
[ - Q 10: 7k a ugllln(i);(()h Th)
H{ 1 2 % 11: dV’fl‘ ) (Qh( )5 7Th( )
12: en or
isod 13: end for
episode 14: Output: Ensemble {#* : k € [K + 1]}.

»
>

 Constrained policy extraction: ﬁ;’f < argmaXq.q supported by u(Q;’f, n>cﬂ

* Given the policy ensemble

:=1Th: Supp(mp(-|s su I3)), Vs €S ).
{ K + 1]} we consider two execution policies: 5 (p) :={mn: supp(mn(-|sn)) Csupp(pn(:|sn)),Vsn € Sh}

~last _ aK+1

* Last-iteration pollcy Tt =1

* Mixture policy: T™¥ = Ezkzlﬁ



Our results: Gap-dependent bounds

* Letk, = }rlrelﬁii] Kk, where k' = inf{ dﬁ(s, a) | dﬁ(s, a) > O}

e Partial data coverage: V(h,s,a),d,,(s,a) > 0 = dﬁ(s, a) >0
» Value suboptimality upper bound: O(d3 H® «2 A} K™1)
* Independent of state space size S

* The first result that scales with K1 under linear MDP, gap assumption,
partial data coverage, and adaptively collected data

e Lower bound: Q(H?kinAmin K71
* Our upper bound is tight in Kand Ay ip

* Techniques: count the number of times the empirical gaps exceed a certain
value + peeling technique




Our results: Leverage “good” linear features
for faster-than-K~* rates

* Let Afin be the smallest positive eigenvalue of Es q)~q: [¢r(s, a)Pr(s,a)"]
— 61710,.6 A—1 + -2 Hry+ -1
* Let k* — .Q.(d H K, Amin O\min + K, (}\min )
Assumption 4.4 (Unique Optimality and Spanning features). We assume that

1. (Unique Optimality - UO): The optimal actions are unique, i.e.
|supp(# (k)| = 1,¥(h, sn) € [H] x Sp.

2. (Spanning Features - SF): Let ¢j (s) := ¢p(s, 77 (s)). For any h € [H],

span{®y (sn) : Vsn € Si'} C span{ oy (sp) : Vs € Sp}-

* We have: SubOpt(#*) = 0 vk > k,



Our other results

Algorithm Condition Upper Bound Lower Bound Data
PEVI Uniform O (Hf;l}i{/ 2) Q (\/—H;_{) Independent
Adaptive
BCP-VI Adaptive
Adaptive
Adaptive
BCP-VTR

Adaptive




Summary

We now have a provably (instance-)efficient algorithm for linear
function approximation with polynomial sample and runtime

Algorithm: LSVI + LCB + Bootstrapping + Constrained policy extraction,
under linear assumptions

Sample complexity:
» Gap-dependent: 0(d® H® k3 A, j e 1)
e “Good” linear features: O (d°H x®A_ L (AF. )72 + kAL, )™H



Thank you

See our poster and arXiv version (https://arxiv.org/abs/2211.13208) for more details
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